Model for the detection of signals in images with multiple suspicious locations.
نویسنده
چکیده
A signal detection model is presented that combines a signal model and a noise model providing mathematical descriptions of the frequency of appearance of the signals, and of the signal-like features naturally occurring in the background. We derive expressions for the likelihood functions for the whole ensemble of observed suspicious locations, in various possible combinations of signals and false signal candidates. As a result, this formalism is able to describe several new types of detection tests using likelihood ratio statistics. We have a global image abnormality test and an individual signal detection test. The model also provides an alternative mechanism in which is selected the combination of signal and noise features candidates that has the maximum likelihood. These tests can be analyzed with a variety of operating characteristic curves (ROC, LROC, FROC, etc.). In the mathematical formalism of the model, all the details characterizing the suspicious features are reduced to a single scalar function, which we name the signal specificity function, representing the frequency that a signal takes a certain value relative to the frequency of having a false signal with the same value in an image of given size. The signal specificity function ranks the degree of suspiciousness of the features found, and can be used to unify into a single score all the suspicious feature characteristics, and then apply the usual decision conventions as in the Swensson's detection model [Med. Phys. 23, 1709-1725 (1996)]. We present several examples in which these tests are compared. We also show how the signal specificity function can be used to model various degrees of accuracy of the observer's knowledge about image noise and signal statistical properties. Aspects concerning modeling of the human observer are also discussed.
منابع مشابه
A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملAutomatic detection of liver tumor motion by fluoroscopy images
Background: A method to track liver tumor motion signals from fluoroscopic images without any implanted gold fiducial markers was proposed in this study to overcome the adverse effects on precise tumor irradiation caused by respiratory movement. Materials and Methods: The method was based on the following idea: (i) Before treatment, a series of fluoroscopic images corresponding to different bre...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2008